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ABSTRACT

Simulation has emerged as a popular method to study the long-term
societal consequences of recommender systems. This approach al-
lows researchers to specify their theoretical model explicitly and
observe the evolution of system-level outcomes over time. However,
performing simulation-based studies often requires researchers to
build their own simulation environments from the ground up, which
creates a high barrier to entry, introduces room for implementa-
tion error, and makes it difficult to disentangle whether observed
outcomes are due to the model or the implementation.

We introduce T-RECS!, an open-sourced Python package de-
signed for researchers to simulate recommendation systems and
other types of sociotechnical systems in which an algorithm medi-
ates the interactions between multiple stakeholders, such as users
and content creators. To demonstrate the flexibility of T-RECS, we
perform a replication of two prior simulation-based research on
sociotechnical systems. We additionally show how T-RECS can be
used to generate novel insights with minimal overhead. Our tool
promotes reproducibility in this area of research, provides a unified
language for simulating sociotechnical systems, and removes the
friction of implementing simulations from scratch.

1 INTRODUCTION

Recommender systems in social media platforms such as Facebook
and Twitter have been criticized due to the risks they might pose
to society. For example, “filter bubbles" [58] have been associated
with the emergence of echo chambers leading to degraded political
discourse online. Similarly, there is evidence that false news might
spread faster and wider online than the truth [81], with the phe-
nomenon potentially exacerbated by recommendation algorithms
[37]. YouTube has come under fire for its potential links to the
radicalization of certain audiences [79] such as young voters in
Brazil [24]. However, there is no consensus on the scope of these
concerns or ways to remedy them. For example, several studies
have argued that the contribution of algorithmic systems to echo
chambers is minimal or nonexistent [6, 25, 32].

Because phenomena such as filter bubbles arise through repeated
system interactions over time, methods that assess the system at a
single time point provide minimal insight into the mechanisms be-
hind them. In contrast, simulations can model how system elements
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such as user, items, and algorithms interact over arbitrarily long
timescales. As a result, simulation has proved to be a valuable tool
in assessing the impact of recommendation systems on the content
users consume and on society [4, 14, 16, 28, 60, 84]. Most simulation
studies of algorithmic systems have relied upon ad-hoc systems
for implementation, which presents several challenges for the ad-
vancement of scientific understanding of the effects of algorithmic
system dynamics.

We present T-RECS (Tools for RECommender system Simula-
tion), an open-source, unified simulation tool designed to enable
investigations of emerging complex phenomena caused by millions
of individual actions and interactions in algorithmic systems in-
cluding filter bubbles, political polarization, and (mis)information
diffusion.

T-RECS can mitigate problems associated with ad-hoc systems in
several ways. First, one of the most time and labor intensive compo-
nents of developing simulations is the engineering effort necessary
to build the system. T-RECS has been developed to drastically re-
duce the engineering effort needed to develop a recommender sys-
tem simulator. This allows researchers to shift their focus from the
mechanics of the simulations to the scientific assumptions behind
them. As a result, T-RECS can accelerate the pace of development
and can facilitate high-quality simulation studies. Second, because
many system elements in T-RECS have been designed with appro-
priate checks, its use can reduce the likelihood of software bugs that
either slow the research process or contribute to erroneous results.
Third, T-RECS provides a simple modular programming interface
and terminology intuitive to researchers in the social sciences and
computer science.

T-RECS is an easy-to-use but powerful framework; using the
pre-populated library of common recommender system models and
other system elements, researchers can instantiate a simulation
using three lines of code. For instance, the following code runs a
simulation with 1,000 users and 10,000 items whose interactions
are mediated by the system default content-filtering algorithm (see
Section 4). The last line gathers default measurements.

recsys = trecs.models.ContentFiltering(num_users=1000,
num_items=10000)

recsys.run(timesteps=100)

measurements = recsys.get_measurements()
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With T-RECS, researchers with expertise in social science but
limited engineering expertise can still leverage simulation to an-
swer important questions about the societal effects of algorithmic
systems. Yet, the framework also provides flexibility for expert users
to build upon. For example, researchers can easily specify each user
and item’s representation in the system, along with new custom
measurements.

Applying the same tool to different problems (1) promotes repro-
ducibility by allowing researchers to easily share their simulations;
(2) provides a common language to describe problems in the lit-
erature; and (3) fosters discovery of principles that apply across
seemingly different problems.

In addition to social science and algorithmic researchers, T-RECS
can also inform the work of engineers, who can compare algorith-
mic design choices, as well as policymakers, who can use the results
to regulate potentially harmful phenomena.

2 BACKGROUND AND RELATED WORK

T-RECS is a tool for evaluating recommendation systems and other
algorithmic information systems, especially their societal conse-
quences, based on agent-based modeling. We briefly review the
relevant background.

2.1 Recommender systems

Recommender systems are responsible for a large part of the content
we see and interact with online. For example, in 2018 YouTube
reported that 70% of the views were derived from recommendations
[70]. In 2019, over half of the more than 1 billion daily active users on
Instagram turned to Explore, the recommendation-driven section
of Instagram, at least once a month [42]; and numbers from 2016
suggest that 80% of the hours streamed by users on Netflix were
driven by its recommender system [31]. Given how frequently
recommendations influence our day-to-day lives, understanding
how recommendation algorithms influence both short-term and
long-term outcomes for users is critical.

The algorithms undergirding recommender systems can take
advantage of a variety of information to serve recommendations
to users. Collaborative filtering is a subset of recommendation al-
gorithms that leverages patterns in existing user interaction data
to generate predictions for new items. Methods such as user-based
or item-based collaborative filtering use a nearest-neighborhood
approach whereas matrix factorization collaborative filtering uses
latent representations of users and items to make predictions. In
contrast to wholly interaction-based methods, content-based algo-
rithms take advantage of item or user meta-data (e.g., genre, director
for movies). More recently, Bayesian approaches (e.g., [62]), rein-
forcement learning (e.g., [85]), and deep learning (e.g., [15, 82, 86])
that draw from methods in machine learning more generally have
also been applied to recommendation problems. Hybrid and en-
semble approaches leveraging multiple recommendation models
are often used to mitigate weaknesses associated with a single
algorithm type [2].

Recommender systems are typically optimized for predictive
accuracy [36], but often include additional metrics such as diversity
and novelty of content [40, 87] and, more recently, fairness-related
metrics [13, 21, 45].

2.2 Recommender systems and society

Recommender systems help users find content that better matches
their short or long-term preferences, and to find it more efficiently.
They also help users discover and develop new interests. From the
platform’s perspective, recommender systems can influence user
behavior in service of the platform’s goals (such as increasing user
engagement), improve the visibility of new products, and provide a
mechanism for learning more about users’ preferences [43].

On the other hand, there are a number of potentially harmful
effects. Filter bubbles are the result of recommender systems pre-
senting a user with content similar to the user’s history, resulting in
intellectual isolation, political polarization, and echo chambers
[58, 72-74]. A more extreme version is radicalization, a feedback
loop in which the algorithm encourages users to consume more
and more extreme content, gradually nudging them to embrace
increasingly radical ideas [55].

Recommender systems may exhibit a bias toward popular items,
resulting in homogenization of user behavior and a concentra-
tion of the market for content in the hands of a small number of
creators [14, 16, 66].

Finally, recommender systems may contribute to the spread of
misinformation online. These phenomena are inter-related: for ex-
ample, misinformation may be more likely to spread in the presence
of echo chambers because users are less likely to encounter correc-
tive information.

Although we have characterized these potential harms as effects
of recommender systems, they may also raise from other types of on-
line information systems including search [30] and social networks
[8]. In the shift from offline to online information seeking, users
are freed from physical-world constraints such as word-of-mouth
recommendation networks or the limited content available through
a newspaper subscription. Online, users can much more easily find
content tailored to their preferences, beliefs, and ideology.

Our understanding of the long-term impact of recommender
systems on users and society is still nascent, and there is little con-
sensus in the literature. For example, quantitative research on the
effects of algorithmic systems has found little evidence of filter
bubbles [6, 25, 32], in contrast to other types of inquiry such as
ethnography [30, 48, 78]. Even studies with the same broad method-
ology produce conflicting findings, such as empirical studies of
misinformation [26, 81] and simulation studies of echo chambers
[4, 28].

Many potential factors could explain these differences. Echo
chambers or other effects may exist but not be caused by the rec-
ommender system, or the effects may only become apparent over
time due to feedback loops and not be revealed by cross-sectional
studies, or there may be differences between platforms. A further
wrinkle related to platform differences is that some studies cannot
be reproduced externally because the data is proprietary.

2.3 Agent-based modeling

Agent-based models help researchers understand the properties
of a complex system by modeling of the individual agents that
comprise the system and the interactions between them [9]. One
of the earliest Agent-Based Models (ABMs) in the social sciences
is Thomas Schelling’s work on the dynamics of racial segregation



about fifty years ago [67]. ABMs became widespread only after the
rise in the availability computational power of the 1990s [5, 23, 50].
ABMs are widely used in areas of research such as economics and
finance, ecology, biology, and epidemiology [35].

2.4 Content creators

Academic research on recommender systems have often focused
on user-centric experiences and outcomes [1]. However, recom-
mender systems often serve multiple stakeholders including plat-
form providers and content creators. Increasingly, researchers have
recognized the importance of a multistakeholder perspective for
developing and evaluating recommender systems [1, 12, 54]. In-
deed, content creators themselves have raised questions about how
recommendation algorithms affect their livelihoods or entrench
societal biases [51]. Moreover, content creators represent a dy-
namic set of agents, and they may shift and adapt in response to
algorithmically-mediated interactions with users [7, 17].

So far, most simulation-based research on the system-level ef-
fects of algorithmic system features have also focused on users
and have likewise failed to account for either the dynamic effects
of content creators or the consequences of system properties for
content creators.

3 THE CASE FOR T-RECS

As noted in Section 2, there are still many open questions on
the long-term impact of recommender systems on users, content
providers, and society at large. T-RECS offers a unified tool to con-
textualize and understand seemingly contradictory results, such as
those from the literature on filter bubbles. The design of T-RECS
facilitates the implementation of related problems using the same
simulation framework.

Similarly, T-RECS allows studying multistakeholder problems,
such as the complex interactions between users and content creators
when they are mediated by an algorithm that tends to suggest more
and more radicalized content.

In this section, we explain what simulation, in particular agent-
based modeling, can offer. Finally, we argue in favor of unified tools
such as T-RECS.

3.1 The case for simulation

Observational and experimental methods have been widely used to
study the impact of recommender systems [3, 15, 38, 57]. Contrary
to observational methods, simulation provides the tools for gener-
alizable and causal discoveries; furthermore, models are typically
not affected by ethical issues that arise when experimenting on
real users. Furthermore, while methods like offline evaluation on
historical data (e.g., the MovieLens dataset [33]) [13, 21, 45] are
useful to evaluate algorithms on fixed or unknown user strategies,
simulation provides an additional degree of control on evaluating
systems on varying user behaviors. Finally, contrary to analyti-
cal approaches, simulation supports complex environments and
focuses on the dynamics of the system instead of static points of
equilibrium.

3.2 The case for Agent-Based Modeling

Agent-based modeling is useful to study emergent phenomena:
those that arise from the interactions of individual agents, often
in counter-intuitive ways. Bonabeau gives the example of a traffic
jam, noting that it may move in the opposite direction from the cars
that are causing it [9]. He presents a list of system properties that
may give rise to emergent phenomena, such as adaptive agents and
network effects, all of which are present in recommender systems.

Recently, ABMs have been explicitly used to describe interac-
tions mediated by a recommender system. For example, Geschke
et al. [28] modeled an online information diffusion network with
users and pieces of information as the agents; similarly, Nasrinpour
et al. [56] studied message propagation on Facebook with an ABM.
For more examples, see Table 1.

ABMs are especially apt at discovering indirect and unintended
effects of design choices because the outcomes of simulations emerge
from interactions. Therefore, researchers do not need to encode
their expectations into the initial assumptions [20].

Agent-based modeling can express geographical and social dis-
tance [20]. Thus, they are suitable to model adjacency networks
between users, which are often associated with recommender sys-
tems. For example, recommender systems with a community-based
component leverage connections between users and their friends
to provide recommendations [64].

3.3 The case for a new tool

To determine whether a new tool can be useful, we surveyed exist-
ing simulation studies of algorithmic systems, finding 15 studies. A
summary of the studies we reviewed is in Table 1.

We argue in favor of unified tools in this space, such as T-RECS,
with the following observations. First, these 15 studies represent re-
cently published usages of simulation to understand societal impact
of algorithmic systems. Of these, seven specifically focus on gen-
erating knowledge on recommender systems, six focus on online
information diffusion, and two focus on opinion dynamics.

However, all of the studies we reviewed involved system compo-
nents conceptually representing “users,” “items,” and “algorithms”
As a result, we designed T-RECS to also have system elements that
could represent these types of entities and enable flexible represen-
tations of their properties and behaviors.

Second, our literature review indicates that simulations of al-
gorithmic systems often rely on ad-hoc software, which can be
challenging to develop and reproduce. For example, 12 out of the
15 studies in Table 1 were developed independently, including six
of the seven studies focusing on recommender systems. Two used
NetLogo, a programming language and modeling environment orig-
inally developed in 1999 for multi-agent simulations, and one used
AnyLogic, which is proprietary GUI-based simulation software
available for academic use [10, 76]. The heterogeneity in implemen-
tations in the studies points to the need for a unified framework.

The primary benefits of applying the same tool to different prob-
lems are both practical and scientific. From the practical perspective,
a unified framework will reduce the engineering effort needed to
develop a simulation, allowing researchers to shift focus from the
mechanics of the simulation to the assumptions behind them. In
addition to enabling researchers to focus more on the science of



Simulation to study sociotechnical systems

Work Model Main topic Tool ABM?
Aridor et al. [4] RS Filter bubbles n.a. Yes
Chaney et al. [14] RS Filter bubbles n.a. Yes
Ciampaglia et al. [16] RS Popularity bias n.a. No
Garimella et al. [27] 1D Filter bubbles n.a. Yes

Geschke et al. [28] RS Filter bubbles NetLogo [83]  Yes
Goel et al. [29] ID Virality n.a. Yes
Jiang et al. [44] RS Filter bubbles n.a. No
Lee et al. [47] oD Perception biases n.a. Yes
Lim et al. [49] ID Digital divide NetLogo Yes
Nasrinpour et al. [56] ID Virality AnyLogic [10]  Yes
Perra and Rocha [60] OD Polarization n.a. No
Sun et al. [71] RS Popularity bias n.a. Yes
Tambuscio et al. [75] ID Misinformation n.a. Yes
Tornberg [77] ID Misinformation n.a. Yes
Yao and Huang [84] RS Popularity bias n.a. Yes

Table 1: Simulation literature survey. RS = recommender systems, ID = online information diffusion, OD = online opinion

dynamics

simulations, a common framework will also speed up development,
facilitating a greater volume of high quality research on algorithmic
systems. For example, if much of the up-front engineering effort has
already been accomplished through the unified framework, there
are fewer new system elements and consequently, fewer places
where software bugs could lead to slow downs in development, or
worse, erroneous results.

From the scientific perspective, a major issue with ad-hoc sys-
tems is that results can be difficult to reproduce. Because many
idiosyncrasies in design and implementation are eliminated in a
unified system, the likelihood that another research team could
reproduce a scientific finding increases. Furthermore, a unified
framework will allow researchers to communicate in a common
language for different problems. For example, our literature review
in Table 1 demonstrates that multiple researchers have conducted
simulations on filter bubbles; however, each of these studies has a
unique definition for what constitutes a filter bubble and unique
metrics for evaluating filter bubble effects. As a result, it is difficult
to reconcile results across similar simulations, much less across
simulations that address more disparate concepts.

Before T-RECS, there have been other efforts to provide a unified
simulation environment for sociotechnical systems [10, 11, 19, 46,
76]. NetLogo was designed with a heavy emphasis on visualizing
agents in 2D space and also requires users to learn the NetLogo pro-
gramming language [76]. Furthermore, NetLogo was not optimized
for large-scale simulations for hundreds of thousands of users, and
complex recommender system algorithms are not straightforward
to implement in the NetLogo interface. AnyLogic is proprietary
software for agent-based modeling developed by the AnyLogic com-
pany [10]. Simulations in AnyLogic are created through a graphical
user interface, limiting expressiveness and flexibility.

In the past few years, multiple simulation libraries specifically
geared towards studying the temporal dynamics of simulated rec-
ommender systems have been released. RecoGym was the first

reinforcement learning simulation environment for recommenda-
tion, in the context of online advertising [65]. The RecSim library
was designed for a reinforcement learning-based approach to mod-
eling recommender systems [41]. Another follow-up simulation
framework, RecSim NG, uses probabilistic programming for un-
certainty modeling in recommender ecosystems [52]. While these
libraries offer useful mathematical tools for reasoning about rec-
ommender systems, they are geared towards expert recommender
systems practitioners and researchers, requiring knowledge of li-
braries like Tensorflow, OpenAI Gym, or Edward2, and are designed
for a particular technical frame, such as reinforcement learning or
probabilistic programming. In contrast, T-RECS is designed to be
flexible and simple enough that users familiar with Python and
numpy will be able to build and run simulations relatively quickly,
promoting accessibility to a broader audience of researchers, from
computer scientists to social scientists.

The most related tools to ours are ML Fairness Gym and Re-
cLab [19, 46]. ML Fairness Gym implements the OpenAl Gym
API to provide a set of reusable components for studying long-run
fairness in algorithmic decisionmaking systems over time. The ML
Fairness Gym is framed to have a specific focus on fairness, while
our tool is intended to allow practitioners to study a broad range
of phenomena. Furthermore, the Fairness Gym does not have ro-
bust support for multi-agent simulation, instead focusing on the
decision-maker as the primary agent. In contrast, T-RECS allows
for dynamic behavior at the levels of users, recommender systems,
and content providers. RecLab, a recently released Python library
for simulating and evaluating recommender systems, is the most
similar tool to T-RECS [46]. While RecLab focuses on the evalu-
ation of different recommender systems, T-RECS is designed to
make it equally easy to study the effects of different user choice
models, content creator behavior, or item distributions. As a result,
T-RECS has the expressiveness to model sociotechnical systems



beyond recommender systems, such as information diffusion in
social networks.

4 DESIGN AND ARCHITECTURE

Figure 1 shows the modules of T-RECS, which include: (1) the users,
representing the entities interacting with the recommendations:
for example, consumers on an e-commerce platform; (2) the items,
representing the object of the recommendations: for example, the
movies in a movie recommendation system; and the content cre-
ators, providing new items during the simulation; (3) the model
representing the mechanism through which users interact with
items: for example, a collaborative filtering algorithm; and (4) the
metrics which evaluate the outcomes of the simulation sampled
at each simulation step. Metrics also keep store information on
selected internal states of the system, such as the user preferences
over time. Note that these modules are common to many of the
simulations in Table 1. We go into more detail about each of the
core modules in the subsequent sections.

4.1 Simulation Dynamics

We summarize the simulation dynamics of T-RECS, inspired by
the model developed by Schmit and Riquelme [68]. We note that
this simulation framework works for many algorithmic system that
can be modeled as a user-algorithm feedback loop. In the following
sections, we present more details about how the basic dynamics
can be enriched and changed. The numbers in the following list
correspond to the numbers highlighted in Figure 1.
At each time step:

(1) The model predicts the user scores for each item in the sys-
tem. These predicted scores, which can be different from the
actual user scores, are used by the system to make recom-
mendations to users. By default, the predicted user scores
are calculated as the inner product between user preferences
and item attributes.

(2) The model presents a set of items to each user. In the gen-
eral case, the system presents different items to each user,
generally chosen considering the user scores predicted in
the previous step. At every step, items may also be randomly
interleaved into recommendations, simulating user discov-
ery of items outside of algorithmic recommendations, as in
Chaney et al. [14]. If runtime creation of items is enabled, the
items most recently generated by the content creators will
be included in system-generated recommendations based on
how the specific recommendation algorithm handles new
items. For example, in a popularity-based system, all new
items have a popularity at zero and are placed near the bot-
tom of recommendation lists.?

(3) Each user gives feedback to the presented items. This means
something different for different systems (e.g., in a movie
recommender system, users choose movies to watch). Typi-
cal user feedback is implicit (to simulate a click, generally
only on one item). Users decide which item(s) to consume
based on their actual preferences.

ZT-RECS users may specify custom behavior for how new items are scored. For example,
you may specify that all new items do not appear in recommendation lists and instead
are randomly interleaved throughout the recommendations, as in Chaney et al. [14].

(4) The system records each user’s feedback and updates its in-
ternal state. What this means varies with each model. For ex-
ample, T-RECS’ popularity model keeps track of the number
of interactions each item has received; our content filtering
model keeps track of the attributes each user has interacted
with.

(5) The measurement module updates all tracked metrics based
on the latest interactions. The default metrics vary by model,
but could include an accuracy measure, such as the mean
squared error between the predicted user scores and the
actual user scores or a variety of other measures of recom-
mendation list diversity, user interaction similarity, etc.

4.2 Users

Users in T-RECS are represented by two main elements: their prefer-
ences and the score they attribute to each item in the system. With
our design, informed by our survey of the literature, we assume
that the real user preferences and the preferences predicted by the
recommender algorithm are separate. Similarly, recommender al-
gorithms may predict scores for the items in the system that do
not perfectly correspond to the real scores attributed by the users.
This modeling choice in several studies we analyzed in our survey
[4, 14]. Therefore, in T-RECS there are four dedicated data struc-
tures: actual user preferences, predicted user preferences, actual
user scores, and predicted user scores.

Additionally, T-RECS provides a simple framework to change
how user preferences evolve over time, typically in response to the
items they are exposed to and consume. This behavior has been
adopted in several of the studies we analyzed in our survey [28, 44].

4.3 Items and content creators

Items in T-RECS can be fixed or dynamic. In a system such as a
movie recommendation website, it might be useful to consider the
catalog of items as fixed, since the changes to it are not necessarily
dependent on the response of the audience to it.

However, in many real-world recommender systems the catalog
of items is not fixed. Instead, it changes over time as producers,
or content creators, create and publish new items. For example, a
platform such as YouTube might be better modeled with a dynamic
catalog of items, as YouTubers are as much a part of the ecosystem as
viewers. Most importantly, creators are often incentivized to adapt
the content they publish in direct response to the viewers’ reactions.
In T-RECS, we added a module for content creators to approximate
this phenomenon. Researchers can define the incentives of the
creators and how they change over time.

Regardless of the specific item and content creator configura-
tion, researchers can enforce additional constraints to how users
consume items, or to how items are recommended to users. For
example, it is possible for users to avoid consuming items they have
already seen in the past; similarly, recommender models can avoid
recommending items that the users have already interacted with.

Content creators are characterized by the attributes of items they
generate, and can be thought of as particular distributions from
which items may be sampled. To mirror some of the complexity of
content creator behavior in real systems, the attributes of the items
content creators generate are sampled probabilistically.
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Figure 1: A conceptual diagram indicating the different design components of a T-RECS simulation, and the components
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4.4 Model representation

In T-RECS, we make the following decisions regarding recom-
mender system models:

(1) We use an event-driven model as opposed to a time-driven
model-that is, we automatically skip all steps in which the
system did not observe any user interactions. This increases
the efficiency of the simulation. As a consequence, one sim-
ulation step does not correspond to a constant time unit.

(2) User interactions are processed in parallel. By default, at each
step, the system receives one piece of feedback from each
user, although T-RECS users can override this as necessary.
Researchers who want to observe multiple user-item inter-
actions before retraining a model can specify that behavior
through the same framework.

Although our framework is particularly well-suited to simulating
recommender systems, we find that it is also flexible enough to
model a broader set of sociotechnical phenomena. For example,
we used T-RECS to model the process of information diffusion in
networks in which recommender systems do not necessarily have
arole, as long as they follow the user-item-system feedback loop
approach. In the context of information diffusion, users come into
contact with various pieces of content (items) and probabilistically
choose to share content with others in their network. At each step,
the system monitors which users have shared content and presents
shared content to their neighboring users at the next timestep,
keeping track of which users have shared content (and thus will
not reshare in the future). process of sharing We offer more details
on this topic in Section 5.2.2.

4.5 Metrics

In T-RECS, metrics are designed for researchers to gather infor-
mation about the model and the simulation. They often define the
output of the simulation: for example, researchers interested in
discovering filter bubbles can measure diversity of recommended

content across users and draw conclusions from the results of these
measurements.

Our main contribution in this regard is to provide a mechanism
for easy implementation and templates for researchers to use as
an example. Our literature survey (Table 1) suggested very little
consistency of metrics used across studies. While we could identify
overarching themes — the most prominent being distances between
attributes and preferences — each of the 14 studies we analyzed
used distinct metrics. Therefore, we purposely provided a limited
set of metrics with the expectation that researchers will want to
implement their own metrics.

4.6 Programmer interface

Our programmer interface is beginner-friendly. We took inspiration
from popular machine learning library SciKit-Learn [59] in that
models can be instantiated and simulations can be run without
specifying any argument. T-RECS was developed in Python and
makes heavy use of the numpy library [34]. We deliberately chose
the default behaviors and provided an interface to easily modify
them. For example, instantiating a simulation using the popularity
model can be achieved by this line of code:

recsys = trecs.models.PopularityRecommender()

The line above instantiates a popularity model with 100 users and
1250 items. User and item characteristics are also generated with
default values from an arbitrary distribution (see the documentation
for more details). We see these as sensible defaults, as the simulation
is large enough to see emergent network effects while small enough
to pose minimal computational burden; of course, T-RECS users
are free to modify these parameters as they see fit.

Although T-RECS was designed to be accessible to beginners,
it offers flexibility in changing a wide array of components for
more advanced calibration. The customization is not limited to
the parameters directly related to users and items. For example,
researchers can define new score functions—that is,the functions



calculating actual and predicted user scores. Instead of using the
default inner product as the score function, the user can define their
own mechanism for calculating user-item scores. As an example,
we provide an alternative score function that calculates scores using
the cosine similarity between U (or U) and I. We also provide a
mechanism to define new score functions when initializing a model.

As with score functions, T-RECS offers an API to define new
models, metrics, user feedback behaviors, and more.

5 CASE STUDIES

Our goal in developing T-RECS was to create a tool that introduced
a common conceptual framework for conducting simulations with
different levels of complexity, different methodologies, and different
goals, such as those enumerated in Table 1. To illustrate that T-RECS
has achieved this aim, we reproduced results from two substantially
different simulation-based studies. In the first study, Chaney et al.
[14] examined how algorithmic confounding in recommendation
systems leads to the homogenization of user behavior. In the second,
Goel et al. [29] simulated models of contagion to understand the
patterns of online information diffusion on Twitter. Although the
two studies model distinct sociotechnical systems, both can be
expressed within the T-RECS framework.

Our goal in reproducing these two studies was to perform a
conceptual replication rather than an exact replication [18]. While
exact replication aims to perform an identical operationalization of
the original test as the original study, a conceptual study examines
whether a hypothesis holds up under different operationalizations
of the same conceptual variable. Conceptual replications provide
evidence as to the robustness and generalizability of the theory.
Although our replications are faithful to the original authors’ de-
scriptions of their methods, our goal was to show that T-RECS can
be used to generate similar insights to those from these studies,
rather than to generate wholly identical graphs or statistics. For
this reason, we did not seek out source code from the authors of the
original studies, but rather, reconstructed the simulation parame-
ters within T-RECS using only the details provided in the published
reports.

Both of the studies we replicated were originally implemented
via ad-hoc systems. Without a common framework, a researcher
interested in reproducing these studies would have to re-implement
every element using the methodology presented in the papers, and
ideally, would also have to implement all the necessary testing
functionality from scratch. In contrast, because both replication
studies involved representations for users, items, and models, we
were able to use the core components of T-RECS as a starting point
to reproduce the results of these prior studies rather than beginning
anew. Similarly, we were able to take advantage of the many built-in
testing capabilities of T-RECS for debugging. Relying on the core
functionality of T-RECS allowed us to concentrate our efforts on
faithfully reproducing aspects of our replication studies’ designs
rather than on engineering.

Our conceptual replication case studies demonstrate the power
of T-RECS to accommodate complex and distinct algorithmic simu-
lations; however, another major benefit of our framework is that
simulation designs can be easily extended. In our third and final case
study, we conduct a constructive replication—a replication in which

the findings of a prior study are replicated and then extended to
encompass new elements that provide additional scientific insight.
Our constructive replication study examines the homogenizing ef-
fect on item generation that is induced by the presence of content
creators, who adapt over time to user feedback. For this study, we
reuse much of the code and many of the assumptions from our
replication of Chaney et al’s research [14]. As a result, we can
confidently attribute any differences between the results of the
simulations with and without content creators to the introduction
of this new system element rather than faulty reproduction of the
prior work’s assumptions or implementation details.

In the following sections, we describe our motivations, meth-
ods, and results in adapting T-RECS to each case study. For more
technical details, please see the Appendix. All code necessary to
reproduce our experiments can be found online.?

5.1 Algorithmic confounding (Chaney et al.)

5.1.1 Background. At a high level, Chaney et al. [14] illustrate the
detrimental effects of algorithmic confounding, which occurs when
a recommendation algorithm is trained on user interaction data
that is itself influenced by the prior recommendations of the algo-
rithm. The study shows that algorithmic confounding homogenizes
user behavior more than what would occur if all users were pro-
vided with recommendations that best matched their underlying
preferences.

5.1.2  Motivation. We chose to replicate the results from Chaney
et al. [14] for several reasons. First, this investigation leveraged
complex representations for each of the core components of the
simulation (i.e., users, items, and models). Although the goal of
the original study was not to approximate a real-world system at
high fidelity, many of their choices of parameters and represen-
tation were based on an understanding of the characteristics of
real-world systems (e.g., short head, long tail in item popularity).
By illustrating that T-RECS can be modified to manifest this level of
nuanced representation, we demonstrate the power of our simple
architecture for encapsulating complicated specifications. That is,
T-RECS can be used not only for simple toy models, but also for
highly complex use cases. Second, this study focused on how the
dynamics of one core component (models) could affect the outcome
of the system over time through its influence on another component
(users). Thus, by replicating this finding in T-RECS, we show that
our system can be used to model interactions at the level of entities
that ultimately affect the system as a whole. As this is generally the
goal of most agent-based simulations, this suggests that our system
will be well-suited to most questions of this nature.

5.1.3  Simulation overview. We begin with a high-level overview
of the user-item-model interaction dynamics. Each user and each
item has some “true” representation as a vector of attributes. At
each timestep, every user is shown a list of items by the model,
where the model attempts to show each user u the set of items
which have maximum predicted utility for u. Furthermore, at each
timestep, “new” items are introduced into the system. These items
are interleaved randomly into each user’s recommendation list inde-
pendently for each user. For each item i, there is a “true utility” that

3https://github.com/sunnymatt/t-recs-experiments
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user u obtains from interacting with that item that is a probabilistic
function of u and i’s attributes; however, each user has incomplete
knowledge of their true utilities (i.e., they have an “educated guess”
of how much they will like each item before interacting with it).
Each user then interacts with one item on the basis of this imperfect
knowledge of the utility that would be gained from each item in the
recommendation list, plus an “attention mechanism” that accounts
for the item’s position in the recommendation list. The interaction
data is then fed back into the model, which may or may not use the
feedback to update its internal representation of users and items.
After interacting with an item once, a user will not interact with
that item again during the simulation.

Each model has its own method of internally representing users,
items, and the predicted utility that each user u obtains from inter-
acting with each item i. For example, the popularity model repre-
sents each item i as the number of times that any user has interacted
with i, and the predicted utility for a given user u and item i is sim-
ply the popularity of item i (i.e., all users are recommended the same
set of the top-k most popular items, setting aside new item inter-
leaving). We implement and compare results between six different
types of models: popularity, content filtering, matrix factorization,
social filtering, random, and ideal. The last two models are included
for the purpose of comparison: the random model recommends
items randomly to each user, while the ideal model recommends
items on the basis of the true user-item utilities. For more details
about each model in the simulation, see Section A.1.

5.1.4  Simulation parameters. The simulation parameters that fol-
low are taken from the methods of Chaney et al. [14]; we describe
them here for exposition.

We run each simulation for a total of 100 steps. At each time
step, we introduce 10 new items, for a total of 1000 items at the end
of the simulation.

To isolate the effects of algorithm confounding, we execute the
simulations in single training and repeated training modes. In both
modes, the recommendations operate in startup mode at first, mean-
ing they recommend items randomly in order to gather data about
user behavior.

In single training mode, the model in each simulation is trained
once after 50 startup steps. After training, the only items recom-
mended to users are those from the startup period (although users
will see new items because of random interleaving). In repeated
training mode, the models are trained at each time step after 10
startup steps. These models update their internal representations
of users, item, and user-item scores at each training step. Each
recommendation model provides recommendations for all items in
the system at the time of training.

We differ from Chaney by running 400 trials for each recom-
mendation model in both the single training and repeated training
modes, in order to average out random noise. In each trial, the
underlying user profiles, item attributes, true user-item utilities,
and the user-item utilities known to the user were kept the same
for all recommendation models.

5.1.5 Metrics. To assess the homogenization of user behavior,
Chaney et al. calculate the average Jaccard index of user inter-
actions over pairs of users. For a given pair of users, the Jaccard
index is calculated as the size of the set of items both users have
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Figure 2: Subfigures (b) and (c) show changs in Jaccard index
of user behavior, users paired by cosine similarity of pre-
dicted user attributes, +1 SD across runs. We observe mild
homogenization in the single training case but observe in-
creased homogenization with repeated training. Compare to
subfigure (a), a copy of the original figure from Chaney et al.
[14].

interacted with, divided by the size of the set of items either user
has interacted with. To construct pairs of users, the authors pair
each user to the user who is most similar according to the recom-
mendation model’s internal representation of user preferences. At
each timestep, the average Jaccard index is measured relative to the
ideal model’s average Jaccard index calculated over the same pairs
of users to allow for an evaluation of homogenization over and
above what would occur if the users were provided with perfect
recommendations.

5.1.6  Results. Figure 2 shows the evolution of user behavior ho-
mogenization under four different recommendation models, where
homogenization is measured relative to the ideal recommendation
system. We observe results that are qualitatively similar to the



original study. First, our results show that the magnitude of ho-
mogenization is much greater when recommendation models are
trained repeatedly. Second, in the single training case, most recom-
mendation models exhibit an increase in homogenization directly
after the training step, followed by a decrease or slowed increase
in homogenization. Third, the random model homogenizes user
behavior similarly to the ideal recommendation. Overall, although
our results do not match Chaney et al’s [14] exactly, we empha-
size that the takeaways are qualitatively similar even though the
implementations (i.e., operationalizations) are slightly different.

5.2 Structural virality (Goel et al.)

5.2.1 Background. Goel et al. use a simulation-based approach to
investigate how well simple theoretical models of social contagion
can capture patterns of online information diffusion observed em-
pirically in a dataset of billions of events on Twitter [29]. They find
that a relatively simple theoretical model simulated at similar scale
recapitulates many of the trends found in their empirical dataset.
In particular, they examine patterns of popularity-how often in-
formation cascades reach large numbers of users—and structural
virality—a metric that distinguishes between viral and broadcast
events. They discovered that content that is popular on Twitter
is not always “viral,” as was often assumed. Instead, content com-
monly achieved popularity by being reshared by accounts with
large followings.

5.2.2  Motivation. We chose to replicate Goel et al’s study for two
primary reasons. First, we designed T-RECS to be general enough
to accommodate algorithmic systems other than recommendation
systems. Goel et al. do not explicitly attempt to simulate a recom-
mender system, but instead use a simulation-based approach to
better understand the possible mechanisms for the diffusion of on-
line content. By replicating their findings, we demonstrate that our
library is powerful enough to provide a common framework for
many different types of simulation-based research. Second, Goel
et al. study outcomes that emerge from user interactions at scale.
Our replication effort simulates outcomes on networks of 1,000,000
users, indicating that researchers can use T-RECS to evaluate large-
scale phenomena.

5.2.3  Simulation framework. Goel et al’s models are all based on
the susceptible-infected-recovered (SIR) framework, a model of
contagion that is often used to model social diffusion. In SIR models,
individuals are infected (i.e., share a piece of content), and then
subsequently infect their susceptible contacts independently with
probability . After being infected, individuals recover and are no
longer susceptible to infection, nor do they infect their contacts. On
a given graph with average node degree k, an item with infection
probability f has the “basic reproduction number” r = kf.

Similar to our case study of Chaney et al. [14], we describe
the parameters of our simulations; unless otherwise stated, the
parameters are the same as described in Goel et al. [29]. In our
replication, we generated scale-free networks of 1,000,000 users.
Goel et al. use scale-free networks of size 25,000,000; we use smaller
networks (albeit on the same order of magnitude) due to space and
compute constraints. The degree of each graph is determined by
a, the parameter for a power law sequence. In accordance with

Goel et al., we analyzed graphs for the following values of a: 2.1,
2.3, 2.5, 2.7, and 2.9. For each value of a, we generated 25 1M-node
graphs .4 Following Goel et al., in each simulation, we randomly
selected a “seed user” to be infected with a particular item that, on
a given graph, has a reproduction value r. We tested the following
values of r: 0.1, 0.3, 0.5, 0.7, and 0.9. In total, we ran approximately
2,100,000 simulations across all values of a and r. Subsequently,
we measured the probability of popular cascades (i.e., simulations
where at least 100 users became infected) and the structural virality
of these popular cascades.

5.24 Results. The results of our simulations are shown in Figure
3. Our findings are qualitatively similar to Goel et al’s, even though
our simulations were performed on 1M node graphs, while theirs
were performed on 25M node graphs. For higher values of r, we
observe higher probability that a given cascade reaches at least 100
users. We also find that at lower values of r, content is less likely to
become popular on graphs generated with lower values of @, and
at higher levels of r, the opposite is true. In line with Goel et al’s
findings, we also observed that the mean structural virality was
generally highest for high values of @ and increases with r.

Finally, Goel et al. observed that simulations run with parameters
r =~ 0.5 and @ = 2.3 best matched the patterns in the empirical
Twitter dataset. For this parameter setting, they found that the
probability of a content becoming popular was about one in a
thousand, and the mean structural virality of popular cascades was
about 3.7. This matches the empirical results from our simulations
as well. Goel et al. also find that the correlation between the size of
popular cascades and structural virality is approximately 0.1, which
falls within range of 0 to 0.2 which was observed in the Twitter data.
Similarly, our simulations with the parameter setting r ~ 0.5 and
a ~ 2.3 yielded a correlation of ~ 0.086 between size and structural
virality.

5.3 Challenges in replicating simulation-based
research

The prior two case studies illuminated some challenges in replicat-
ing simulation-based research. In theory, the methodology section
of a technical report should be sufficient for another researcher
to be able to fully replicate the design. In practice, few research
designs are simple enough to be completely described within a
relatively short methodology section. To reproduce the results of
Chaney et al. [14] and Goel et al. [29], we needed to consult not
only the methodology section, but also methodological appendices,
footnotes, and details that appeared only in the graphs of results.
When the researcher’s primary goal is explaining the theoretical
model to the reader, focusing only on the most critical details in the
methodology section is understandable; however, this approach has
a side effect of rendering the study more difficult to replicate. To suc-
cessfully produce our conceptual replications, our team frequently
had meetings to parse the exact meaning of single sentences or
even single phrases within the text to attempt to correctly grasp
their intended meaning. Even then, there were multiple plausible

4 Although not specified in the original paper, Goel et al. also ran multiple simulations
on pre-generated graphs; we are not certain of the number of unique graphs they
generated for their experiments.
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Figure 3: Probability of popular cascades and mean struc-
tural virality for SIR simulations on random scale-free net-
works. Compare to Figure 7(A) and 7(B) of Goel et al. [29]

operationalizations of the theoretical models described. For exam-
ple, in the single training case of Chaney et al’s study, we were
not certain whether new items were permanently inserted in each
user’s recommendation list after random interleaving, or if the new
items interleaved at timestep ¢ were never interleaved again at any
later timestep. Such details are incidental to the high-level results
of the paper; however, we found that such details were critical for
correctly reproducing the results. The accumulation of ambiguities
in seemingly trivial implementation details meant that our research
team spent considerable time and effort conducting analyses to rule
out many possible specifications before arriving at the specification
that produced results most similar to the original research. Using
T-RECS allows researchers to use the language of our framework
to describe their methodology in terms that T-RECS users will be
familiar with. Adoption of T-RECS also encourages researchers
to upload and share code from their experiments — which would
completely eliminate the aforementioned ambiguities — since code
that uses a common framework - as opposed to an ad-hoc solution
- is likely to be more useful and legible to other researchers.
Second, the large scale of the simulations in Goel et al. [29]
presented several computational challenges. Without a clear de-
scription the resources required to perform the original study, our
team needed to experiment with several different hardware config-
urations and implement software optimizations to replicate their

findings. Future simulation studies can better facilitate replication
by providing a description of the hardware and memory require-
ments for conducting their analysis. In doing so, other researchers
would be better able to determine whether whether a replication
or novel extension of the work would even be feasible. Similarly,
sharing descriptions and code regarding various optimizations tech-
niques (for example, the use of sparse matrices) would likewise
reduce the time and effort necessary for other research teams to
reproduce — and extend - original simulation findings. Again, we
see T-RECS’s role in encouraging the sharing of reproducible sim-
ulation code as naturally mitigating this issue, as researchers can
simply run the simulation code on their own machines to measure
performance, without having to rebuild the ad-hoc system. Further-
more, contributors to T-RECS will continue to improve the library,
including adding speed and memory optimizations, allowing the
entire research community to benefit and removing the need for
isolated research teams to reinvent the wheel. For example, support
sparse matrices is currently included by default in T-RECS.

Third, rarely do papers describe their procedure for testing the
correctness of their implementations; instead, correctness of im-
plementation is taken as a given. We say this not to imply that
simulations from prior research were incorrect in any way - rather,
we aim to highlight the difficulty of ensuring there are no implemen-
tation errors in a simulation of a large, complex system, particularly
in cases where the simulation environment is being built ad hoc.
Like many machine learning systems, these simulations can fail
silently, meaning that they do not raise obvious bugs or errors dur-
ing runtime. Instead, the researcher observes outcomes that are
obviously incorrect, and then must work backward through the
entire simulation implementation to understand what has gone
awry. With this issue in mind, we designed T-RECS with thorough
test coverage, believing that well-tested code is essential to robust,
reproducible simulation-based research.

Finally, future simulation-based research should include confi-
dence intervals on all results. For example, where figures are shown
with results averaged over multiple simulation trials, it would be
ideal to provide information about the variance of the results across
trials. This would aid future researchers in understanding whether
their observed results differ from those reported in the original
paper because of differing implementations/assumptions or statis-
tical noise. In our case, this information would have provided an
additional amount of confidence that we had properly replicated
previous findings, despite minor differences in the appearance of
our generated figures.

5.4 Content creators and polarization

For our final case study, we present novel work examining a differ-
ent question: how does the presence of adaptive content creators
affect the distribution of dynamically generated items, in compar-
ison to when items are served from a fixed catalog? To answer
this question, we set up our environment with nearly identical
assumptions to those of Chaney et al. The key difference is that the
new items introduced at each timestep, rather than being sampled
randomly from a fixed distribution, are generated by a pool of con-
tent creators, each with their own time-varying item-generating
distributions. At each timestep, these content creators adapt their



item-generating distributions to user feedback at each iteration. We
investigate how this process results in changes to the items gen-
erated over time, when each creator starts out by sampling items
from a fairly uniform distribution across item attributes.

Importantly, we reuse much of the code and many of the as-
sumptions from the case study of Chaney et al. In the original
Chaney simulations, new items are introduced into the system at
each timestep, but they are sampled from a fixed distribution. When
new items are instead produced by content creators who respond
to user feedback, we may observe that creators themselves are “po-
larized” in that they begin the simulation by generating a diverse
range of items, but then adapt to feedback by generating items from
narrower and narrower subsets of the space of possible items.

Our reuse of code affords two main benefits that are indicative
of the advantages of using T-RECS in general. First, it mitigates
the possibility that differences observed are due to differences in
implementation of the simulation environment, rather than the
presence of content creators. Second, from a practical standpoint,
it saves us a great deal of time since we no longer have to re-
implement the assumptions from the original Chaney et al. sutdy
from scratch.

5.4.1 Measuring creator homogenization. In the original study by
Chaney et al., homogenization is measured through an average
Jaccard index of sets of user-item interaction histories [14]. In our
study, we shift our focus to studying the homogenization of cre-
ators, rather than the homogenization of users. We use the average
entropy of each creator’s item-generating distribution as a rough
proxy for homogenization, henceforth referred to as average cre-
ator entropy (ACE). Intuitively, if the entropy of all creator item
distributions is high, then each creator is likely to produce a diverse
set of items, and if the entropy of the item-generating distributions
is low, then each creator is generating a group of items that are
more uniform in their attributes. Note that this measure captures
within-creator homogenization; that is, it measures whether each
creator is sampling from a narrow or broad distribution of items,
not whether creators are increasingly similar to each other. There-
fore, this definition of homogenization does not imply that there
cannot be diversity across creators as a whole; instead, it describes
individual creator behavior.

5.4.2  Adaptive content creators. The specific item-generating dis-
tribution from which content creators sample is a Dirichlet dis-
tribution. Fach creator’s attributes y; is initially sampled in the
following manner: y; ~ Dirichlet(10). For a given creator i, the
item-generating distribution is &; ~ Dirichlet(y; - 0.1). This ensures
that item attributes are sparse and are highly sensitive to shifts in
the creator’s attributes profile, which is initially spread somewhat
evenly across most attributes. Recall that this is very similar to how
the static item-generating distributions are sampled in Chaney et
al. [14].

Content creators respond to feedback by shifting their profiles y
towards items they produced with which users interacted during
the most recent timestep. (Note that both creator profiles and item
attribute vectors sum to one, since both are sampled from Dirichlet
distributions.) Notably, we do not claim that this is the best or only
way to model adaptive behavior; instead, we posit it as a possible
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Figure 4: To illustrate the phenomenon of creator homoge-
nization, we show the change in a randomly chosen creator’s
item-generating distribution at the start and end of the sim-
ulation. At ¢t = 0, the expected item attribute values are all
approximately the same. Since items are sparse, this indi-
cates that the creator is equally likely to create an item with
any of the possible attributes. At t = 500, however, the cre-
ator is likely to generate only items that have a small set of
attributes.

way to approximate how content creators respond to the incentive
to maximize user interactions with their content.

5.4.3 Results. In Figure 4, we provide a visual representation of the
trajectory of a single creator’s item-generating distribution from the
beginning to the end of the simulation. The recommendation system
used was the “ideal” recommender from the Chaney et al. study.
We observe that at the beginning of the simulation, the creator
is about equally likely to create an item with any of the possible
attributes. However, at the end of the simulation, the creator has
“narrowed” to generating items that have a much smaller set of
possible attributes; the creator essentially never generates items
that have a high value for the other attributes.

To illustrate this phenomenon across all recommender systems,
we plot the ACE at each timestep in Figure 5. In all recommender
systems, ACE decreases throughout the simulation at an increasing
rate. We also observe a greater degree of creator polarization in the
social filtering and popularity recommender systems, suggesting
that algorithm selection makes a difference in the rate or degree to
which creators are homogenized.

Finally, we performed a preliminary exploration of how creator
homogenization impacts user homogenization, using a different
measurement of user homogenization than the Chaney et al. use in
their study. Our proxy for user homogenization is averaged over
pairs of users, where the metric averaged is the distance between the
mean items interacted with by the two users. Formally, our metric
is: % Xk, d(ix, Ij), where n is the number of pairs of users, i, is the
average item profile across user u’s interaction history, and d is the
Euclidean distance function. We refer to this measure as Average
Pairwise Distance between Mean Consumed Items (APDMCI). We
find that for all non-ideal recommender systems, APDMCl increases
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Figure 5: Average entropy of the creators’ item-generating
distributions across. For all systems, including the random
recommendation scheme, entropy decreases over time, indi-
cating that each individual creator’s item-generating distri-
bution is being homogenized over the duration of the sim-
ulation. Note that since we use a logarithmic scale on the
y-axis, the rate of decrease accelerates over time.

beyond what is necessary to achieve optimal utility for users. This
suggests that as individual creators become homogenized, user
behavior is also homogenized.

Note that the Jaccard-based measure of user homogenization is
a reasonable measure to use when the item-generating distribution
is fixed, but is not able to capture an important dimension of ho-
mogenization when creators adapt to user feedback. Consider the
example where User A and User B are loyal consumers to Creator
C and Creator D, respectively. Initially, Creators C and D generate
items that are extremely different from one another, but over time
both creators “drift” towards each other, creating items that differ
only moderately. In this scenario, a Jaccard-index based measure
would report no change in homogenization throughout the experi-
ment, although users A and B are now consuming items that are
not as different from each other as they used to be.

5.4.4 Discussion. We observe that when content creators adapt
to user behavior, within-creator homogenization may occur, as
measured by increasing ACE. This means that over time, creators
respond to the engagement incentive by narrowing the set of items
they produce.

First, we stress that we do not make a normative claim that
within-creator homogenization is a negative outcome. In certain
domains, our definition of homogenization can be interpreted as
creators learning users’ interests and responding to user interests.
We suggest that recommender system designers consider designing
domain-specific interventions to mitigate the possible consequences
of polarization.

Second, we also note that we observed a high degree of variance
between runs. We average our results over hundreds of simula-
tions to reduce variance in our calculation of the mean outcome.
Sources of intrinsic variance include the sampling of new user and
creator profiles for each simulation and the noise that is internal to

each recommender system (for example, the process of randomly
interleaving new items into recommendation sets). The ability to
run this many repeated experiments is a strength of the simulation
approach; it may be comparatively expensive or cumbersome to
repeatedly sample new users and retrain recommender systems in
real-world settings.

Finally, our study shows the need for clarity in how the research
community defines concepts like homogenization and polarization
that can apply to a wide range of settings. By using a common
framework like T-RECS, we can hold all components of an experi-
ment constant and compare how different metrics might capture
fundamentally different phenomena. For example, we discovered
during our experiments that the measure of user homogenization
used by Chaney et al. did not translate perfectly to the adaptive
content creator setting, and thus formulated our own measure [14].

These results are intended as an initial exploration into the role
that content creators play in recommender systems. Different mod-
els of content creators and how they adapt to user feedback may
lead to different results. As a result, we invite further research into
the interplay between content creators, users, and recommendation
system algorithms.

6 CONCLUSION

Recommender systems comprise an increasingly central role in
many of our collective and individual digital experiences, from
reading the news, watching movies, and connecting with friends.
In part because recommender systems deployed in production are
proprietary and also vary significantly by use and application, re-
searchers in the social sciences and computer science have turned to
simulation-based approaches. However, most of these efforts have
required researchers to build ad-hoc systems, leading to significant
and redundant engineering burdens across studies. Moreover, as
recommender systems become more complex, the time required to
build even a prototype ad hoc simulation will only increase, as will
the likelihood of bugs and errors.

Informed by both an examination of the current trends in simulation-

based recommender systems research, T-RECS offers unified, flexi-
ble framework for simulating the dynamic interplay between users,
items, and algorithms in recommender systems and other sociotech-
nical systems. Adopting T-RECS offers benefits for individual practi-
tioners, including the guarantee of well-tested code and significant
reductions in engineering burden, as well as for the research com-
munity as a whole, including the promotion of reproducibility,
collaboration between researchers, and a common language for
reasoning about complex phenomena in recommender systems.
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A APPENDIX

A.1 Replication

A.1.1  Algorithmic confounding (Chaney et al.) In the following
sections, we provide more details about our methods reproducing
Chaney et al’s work [14]. If we have omitted any details, please
defer to the assumptions laid out in the original paper.

Recommender system models. Following Chaney et al., we
model six types of recommender systems. Each recommender sys-
tem maintains an internal representation of predicted user pref-
erences and predicted item attributes. Recommendations to each
user are based on the predicted user scores, which are themselves
a function of the predicted user preferences and predicted item
attributes (typically a dot product).

The first model is content-based filtering, which recommends
content similar to what users have liked in the past. As Chaney
et al. indicate, the predicted user preferences in this model are
updated at each step by solving for the least-squares approximation
of user attributes using the scipy.optimize.nnls function [80].
Item attributes are equal to the true item attributes.

Second, we use popularity-based filtering, which serves the most
popular items in the systems. In this model, the predicted item
attributes is equal to a single number for each item: the total number
of interactions that item has received. Predicted user preferences
are identical and constant for all users, so that the predicted score
for user u and item i is simply equal to the number of interactions
that item i has received.

Third, we implement a matrix factorization collaborative filtering
model in which a common latent representation of users and items
is used to recommend items based on user interaction data. The
predicted user preferences and item attributes are generated using


https://web.archive.org/web/20210325170448/https://time.com/5863350/tiktok-black-creators/
https://web.archive.org/web/20210325170448/https://time.com/5863350/tiktok-black-creators/
https://www.cnet.com/news/youtube-ces-2018-neal-mohan/
https://www.cnet.com/news/youtube-ces-2018-neal-mohan/
https://www.nytimes.com/2018/03/10/opinion/sunday/youtube-politics-radical.html
https://www.nytimes.com/2018/03/10/opinion/sunday/youtube-politics-radical.html
https://doi.org/10.1038/s41592-019-0686-2
https://ccl.northwestern.edu/netlogo/

Work

Concept

Simulation to study sociotechnical systems

Metric(s)

Aridor et al. [4]

Filter bubble

User welfare

Item diversity

User homogenization

Average consumption distance at time ¢t and ¢ — 1

Average realized utility

Average normalized pairwise distance between consumed items as seen in [87]
Average pairwise Jaccard index (as seen in [14])

Chaney et al. [14]

User homogenization

Differential item consump-

tion

Jaccard index on the sets of seen items by pairs of users
Gini index on the distribution of consumed items

Ciampaglia et al. [16]

User welfare
Faithfulness

Average quality of items
Kendall rank correlation between popularity and quality of items

Garimella et al. [27]

Filter bubble

Expected number of users exposed to both or neither of two items (representing viewpoints)

Geschke et al. [28]

Echo chamber

Mean distances between users and items/item sharers/friends
Visual analysis of clustering

Goel et al. [29]

Structural virality

Wiener index of diffusion tree [53]

Jiang et al. [44]

Echo chamber
Filter bubble

Distance between initial user interests and final user interests (weak or strong degeneracy)
Speed of degeneracy

Lee et al. [47]

Social perception bias

Error of individuals in estimating true prevalence of binary attribute

Lim et al. [49] Polarization Number of clusters, Herfindahl-Hirschman Index (HHI), proportion of agents in major-
ity/minority clusters, speed of convergence
Nasrinpour et al. [56]  Virality Number of interactions (reads, reposts)
Polarization Prevalence of opinions over time

Perra and Rocha [60]

Echo chamber

Distribution of neighbors holding the majority or minority opinion at end of simulation,
relative to start of simulation

Sun et al. [71]

Accuracy
Popularity bias

Root Mean Squared Error
Gini coefficient

Tambuscio et al. [75]

Spread of misinformation

Echo chamber

Fraction of infected users at equilibrium, state transition rates
Custom generative model for segregated network

Tornberg [77]

Virality
Network polarization
Opinion polarization

Probability that majority of nodes are "infected"
Increased ties within cluster, decreased ties from cluster to outside
Probability that neighboring nodes have similar activation thresholds

Yao and Huang [84]

Group unfairness

Four different unfairness metrics

Table 2: Simulation literature survey. Note that many different metrics are used to assess the dimensions of various concepts.

Concepts that are similar in nature are given the same color.

the alternating least squares approach [39] implemented in the
LensKit library [22]. Note that this matrix factorization model is
not identical to the model used by Chaney et al.

Fourth, we implement social-based filtering, which recommends
items based on the preferences of users in their social network.
In this model, predicted user preferences are represented with an
adjacency matrix that includes the connections between users. Fol-
lowing Chaney et al., we generate this adjacency matrix from the
covariance matrix of true user preferences.

Lastly, we provide two baseline models: a random recommender
system and an ideal recommender system. The former serves ran-
dom items to users. The latter presents items based on the users’
true utility.

Synthetic data. Next, we generate the user and item data. The
actual user preferences U are represented as a |U| X |A| matrix,
where |U| = 100 is the number of users and |A| = 20 is the number
of attributes describing each user. The i-th row of U contains the at-
tributes describing user u;. The values of the rows were drawn from

a Dirichlet distribution with parameters as specified by Chaney et
al.

Each model requires a distinct representation of the predicted
user preferences U. In content-based filtering, predicted user pref-
erences are a |U| X |A| matrix with the same properties as the actual
user preference matrix U. In the popularity-based recommender
system, U is a |U| X 1 matrix with all elements equal to 1, as the
predictions of the system are the same for all users (recall that
predictions are calculated with the dot product of the user item
matrices). In our collaborative filtering model, we use matrix fac-
torization; therefore, predicted user profiles are a |U| X k matrix,
with k being the number of features in the latent representation.
In our social-based filtering model, we represent the users’ social
networks in U; therefore, U is a |U| X |U| matrix.

Items in the system are represented by a matrix I of size |I| X |A],
where |I| = 1000 is the total number of items and |A| = 20 is the
number of attributes that describe each item, analogously to matrix
U for users. The values of the rows were drawn from a Dirichlet
distribution with parameters as specified by Chaney et al.



We additionally calculate users’ utility as defined by Chaney
et al. We specifically distinguish between true utility and known
utility. The latter is the fraction of true utility known to users and
is equivalent to the actual user scores in our framework — that is,
the scores that the recommender systems predict.

True and known utilities are represented with two distinct ma-
trices of size |U| X |I|. For a given user u and a given item i, the
true utility obtained by u interacting with i is sampled from a Beta
distribution whose mean is parameterized as the dot product of the
u’s true preferences and i’s true attributes. From the vantage point
of u, the known utility of interacting with i is a percentage drawn
from a beta distribution with parameters as specified by Chaney et
al.

Performance The total time to run the entire set of experiments
was just under 3 hours on a laptop with 32 GB of RAM and a 6-core
2.6 GHz processor.

A.1.2  Structural virality (Goel et al.) Performance. Several opti-
mizations were required for our replication effort. First, we had to
ensure that the large graphs of millions of users fit into memory
during simulation. T-RECS supports scipy sparse matrices [80],
which allowed our simulations of hundreds of thousands of users to
run using just a few gigabytes of RAM. Second, we made thorough
use of multiprocessing-based parallelization to generate tens of
thousands of simulation runs within days; this was essential be-
cause the probability of generating a popular cascade on any given
run was extremely low (approximately 0.1%). Examples of using
multiprocessing to achieve these speedups are available online at
https://github.com/sunnymatt/t-recs-experiments.

A.1.3  Content creators. Performance. We perform 200 separate
500-timestep trials for each of our six recommendation algorithms
in approximately six hours. While our simulations were performed
on our university’s academic computing cluster, the simulations
utilized just 4.20 GB of memory, suggesting that the experiments
could also be performed on regular desktop or laptop hardware.

A.2 Internal representation for users and items

Challenge: developing a scalable and flexible representation
to encode information about users and items.

We considered two different engineering approaches to represent
users and items internally:

(1) Dedicate a data structure to each user and item.
(2) Dedicate one data structure to all users and another data
structure to all items.

While the first approach may be the most natural choice for an
object-oriented design and well-suited to emphasizing the unique
characteristics of each user and item, the latter has several advan-
tages. First, it scales well with the addition of more users or items.
Second, it is flexible because the system does not need to make
assumptions on the number of data structures dedicated to users
and items, as it will be constant to one. Third, it allows to process
user actions on items in parallel.

As seen in previous work [14], T-RECS stores information about
all the users in the system in one matrix; similarly, all the items
are represented with a single matrix. For both users and items, two
representations are generated—a ground truth representation and

a predicted representation. Therefore, we use a matrix to represent
predicted user preferences, and a separate matrix for the actual user
preferences.

A.2.1 Actual user preferences. Bidimensional matrix U with the
first dimension equal to the number of users in the recommender
system (|U|). The second dimension varies with the model. Typi-

cally, the i-th row represents the preferences of user U; (i € {0, ..., |U|-

1}). Actual user preferences are unknown to the recommender sys-
tem and only known to the users.

A.2.2  Predicted user preferences. Bidimensional matrix U with the
same properties as U. This matrix is calculated by the model and
represents inferred user preferences.

A.2.3  Item attributes. Bidimensional matrix I with the second di-
mension equal to the number of items in the recommender system
(1]). The first dimension varies with the model. Typically, the j-th
column represents the attributes of item I; (j € {0,...,|I| — 1}).
For simplicity, we assume that the model knows the real item at-
tributes; therefore, predicted item attributes are equal to the actual
item attributes.

A.2.4  Actual user scores. Matrix S of dimensions |U| X |I|. The
element at S;; represents the ground truth score for user U; on
item I;. These scores are typically used to define the user behavior
when giving feedback to items that are presented to them. That is,
users will interact with items with the highest predicted actual user
score. T-RECS provides two built-in methods to calculate actual
user scores: the inner product between actual user preferences and
item attributes, or the cosine similarity between the two matrices.
Actual user scores are unknown to the recommender system and
are only known to the users.

A.2.5  Predicted user scores. Matrix S of dimensions |U| X |I|. Pre-
dicted user scores have the same dimensions as S, but are is calcu-
lated by the model using U instead of U. Predicted user scores are
used by the model to recommend item to users.

A.26 Metrics. Challenge: instrumenting the simulator to gather

information over time about.

A fitting implementation choice for metrics was the observer
design pattern, a standard pattern in object-oriented programming
that is used when one object (the observer) needs to be “notified”
automatically when a second object (the observable) changes. In
the case of T-RECS, the model is the observer and the metrics
are the observable objects updated at each step. Specifically, we
define the observer paradigm with a single observer and multiple
observables, as opposed to the traditional pattern with multiple
observers and a single observer. Therefore, models can register (i.e.,
monitor) and unregister (i.e.,, stop monitoring) multiple metrics.
Using the observer design pattern also provided flexibility to easily
develop and integrate new metrics.

Based on a review of the simulation literature about algorithmic
systems (Table 1), we identified two different kinds of metrics: mea-
surements and internal system states. They are both implemented
following the observer pattern.

Measurements are designed to calculate quantities of interest
about the system as a whole. For example, diversity of content
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can be calculated by comparing the distances between the user
preferences and the attributes of the items recommended [28].

System states expose relevant information about the simulation
and the system. Unlike measurements, system states are presented
as is and do not require additional computation. For instance, re-
searchers interested in monitoring the evolution of the predicted
user preferences can register matrix Uasa system state; at each it-
eration, the state of U will be stored internally. This also provides a
mechanism useful to debug model behavior and retrieve quantities
for later inspection and manipulation.

A.2.7 Content creators. By default, content creators are modeled
by a matrix C of dimension | C | X | A |, where C is the number of
content creators and A is the number of attributes that parameterize
each creator’s item-generating distribution. In the default model,
each content creator c is modeled as a vector of length A, where
each entry in the vector denotes pg,, the Bernoulli probability that
an item created by ¢ will have a value of 1 for attribute i. (Note that
this implies that item attributes are sampled independently.) Re-
searchers can also pass in an optional probability p. that represents
the probability that each creator generates an item at any timestep;
this quantity can be used to determine the general “productivity”
level of the content creator pool.

We aimed to maximize simplicity and modularity with our im-
plementation of content creators. A simulation with 100 content
creators that generate items with 20 attributes can be instantiated
as follows:

c = Creators(size=(100, 20))
recsys = trecs.models.ContentFiltering(creators=c)
recsys.run(timesteps=100)

This “drop-in” API allows researchers to easily measure the
impact of adding content creators to their simulations.

This simple default setup is not intended to be highly realistic;
for example, it does not impose any restrictions on the sparsity
of item attributes. Instead, the default implementation is meant to
illustrate the general mechanics of representing content creators
through the matrix C, which contains the parameters for each
content creator’s item-generating distribution. Because the research
community has not yet reached consensus on the correct theoretical
model for content creators, we expect researchers to test theoretical
variations of content creators by implementing their own content
creator subclasses or by modifying the existing content creator
subclass to better suit their research questions.

Simulating content creators generally induces a greater compu-
tational cost per timestep than a fixed item catalog, since the new
items are sampled at each timestep. As the item set grows over
time, long simulations may result in high memory and compute re-
quirements. The choice of item-generating distribution also affects
simulation performance; for example, we found in practice that
modeling each content creator’s item-generating distribution as a
multivariate normal slowed simulations by an order of magnitude.

Finally, the basic simulation dynamics described in Section 4.1
can also be modified with the following options:

A.3 Dynamic user preferences

Modeling how users themselves change over time is key to captur-
ing phenomena of interest that occur in some part at the level of
individual users, such as political polarization or ideological radical-
ization. For example, Geschke et al. [28] simulation-based studies
model how agents attitudes’ shift over time in environments with
or without recommendation algorithms. Jiang et al. [44] provide a
theoretical model for how recommender systems might alter user
preferences over time. In their model, the utility a user receives
from interacting with an item at timestep ¢ might depend on the
user’s history of interactions at all previous timesteps t —1,¢ -2, - -.
Empirical research also seems to suggest that user’s interest might
change over time, such as when users gravitate to progressively
more extremist content on YouTube [63]. The capacity to model
how individual users are affected by their interactions with so-
ciotechnical systems is necessary to capture these types of effects
on users.

In T-RECS, choosing to model dynamic user preferences in a
given simulation translates to an added step after users choose
which item to interact with from the recommendation set. For a
given user, the user’s attributes “drift” towards the chosen item’s
attributes; concretely, we implement spherical linear interpolation
[69], such that the user’s profile vector is rotated in the direction
of the item vector. Users of the T-RECS library may also choose to
implement their own custom drift functions.

A4 Start-up mode

Many recommendation models are unable to make recommenda-
tions to new users (i.e., cold-start); therefore, we provide a mecha-
nism for the system to gather information about users’ preferences
during a start-up phase. We assume that users have preferences that
can be expressed for all items; therefore, we present items randomly
during start-up to maximally sample the range of users’ preferences
and minimize the risk that start-up preference elicitation strategy
could bias the model.

As with other system components, researchers can define their
own start-up strategies if they are interested in the effect of start-up
behavior on subsequent system state. For example, a reasonable
assumption is that users cannot express preferences for unfamiliar
items, so practitioners interested in collecting start-up preferences
as efficiently as possible may benefit from showing users popular
items [61]. However, popular items are the least informative about
individual users’ preferences since they tend to be preferred by all
users.

In start-up mode, the system skips step 1 of the simulation dy-
namics. At the end of the start-up phase, the model is trained on
the collected interactions - that is, the predicted user scores are
calculated based on the items users have interacted with. Note that
the T-RECS API does not support adding and removing users during
a simulation, so the cold start problem only manifests itself when
training a new model from scratch.
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